-- KINEMATICS --
-- PROJECTILE MOTION --
-- DYNAMICS --
-- CIRCULAR MOTION --
-- WORK & ENERGY --
-- MIDTERM 1 - STUDY GUIDE --
-- IMPULSE & MOMENTUM --
-- TORQUE - STATICS --
-- TORQUE - DYNAMICS --
-- TORQUE - ENERGY & MOMENTUM --
-- MIDTERM 2 - STUDY GUIDE --
-- FLUIDS --
-- OSCILLATIONS --
-- MECHANICAL WAVES --
-- CALORIMETRY --
-- 1st LAW OF THERMODYNAMICS --
1 of 2

P02-020 – Equations of Motion

Equations of motion

Consider a projectile launched from the ground with an initial velocity $\overrightarrow{v_0}$ at an angle $\theta $ with respect to the ground. In this specific example, we assume that the origin of the coordinate system is placed at the launching point of the projectile. We then have $x_0=y_0=0$.

The equations of motion of the projectile refer to the kinematic equations $x\left(t\right)$ and $y\left(t\right)$ that give its position as a function of time along $x$ and $y$ respectively as well as $v_x\left(t\right)$ and $v_y\left(t\right)$ that give its velocity along $x$ and $y$ respectively.

To derive these four equations, we start with the components of acceleration and then integrate them with respect to time according to the following steps.

Step 1: integrating acceleration components to derive the components $v_x\left(t\right)$ and $v_y\left(t\right)$ of velocity

We integrate the components of acceleration with respect to time as follows

\left\{ \begin{array}{c}
a_x=0 \ \ \  \\ 
a_y=-g \end{array}
\right.\ \ \ \ \Rightarrow \ \ \ \ \ \left\{ \begin{array}{c}
v_x\left(t\right)=C_1 \ \ \ \ \ \ \ \ \ \ \ \ \\ 
v_y\left(t\right)=-gt+C_2 \end{array} 
\right.

where $C_1$ and $C_2$ are constant that are determined by applying the initial conditions

\left\{ \begin{array}{c}
v_x\left(0\right)=v_0{\mathrm{cos} \left(\theta \right)\ } \\ 
v_y\left(0\right)=v_0{\mathrm{sin} \left(\theta \right)\ } \end{array}
\right.

which yields

\left\{ \begin{array}{c}
v_x\left(0\right)=v_0{\mathrm{cos} \left(\theta \right)\ }  \\ 
v_y\left(0\right)=v_0{\mathrm{sin} \left(\theta \right)\ } \end{array}
\right.\ \ \ \ \Rightarrow \ \ \ \ \ \left\{ \begin{array}{c}
C_1=v_0{\mathrm{cos} \left(\theta \right)\ }  \\ 
C_2=v_0{\mathrm{sin} \left(\theta \right)\ } \end{array}
\right.

Thus, we conclude that the components of the velocity of the projectile are given by

\left\{ \begin{array}{c}
v_x\left(t\right)=v_0{\mathrm{cos} \left(\theta \right)\ }\ \ \ \ \ \ \ \ \ \ \  \\ 
v_y\left(t\right)=-gt+v_0{\mathrm{sin} \left(\theta \right)\ } \end{array}
\right.

Step 2: integrating velocity components to derive the components $x\left(t\right)$ and $y\left(t\right)$ of position

We integrate the components of velocity with respect to time as follows

\left\{ \begin{array}{c}
v_x\left(t\right)=v_0{\mathrm{cos} \left(\theta \right)\ }\ \ \ \ \ \ \ \ \ \ \ \ \  \\ 
v_y\left(t\right)=-gt+v_0{\mathrm{sin} \left(\theta \right)\ } \end{array}
\right.\ \ \ \ \Rightarrow \ \ \ \ \ \left\{ \begin{array}{c}
x\left(t\right)=v_0{\mathrm{cos} \left(\theta \right)\ }+C_3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\ 
\\
\displaystyle{y\left(t\right)=-\frac{1}{2}gt^2+v_0{\mathrm{sin} \left(\theta \right)\ }t+C_4} \end{array}
\right.

where $C_3$ and $C_4$ are constant that are determined by applying the initial conditions

\left\{ \begin{array}{c}
x\left(0\right)=0 \\ 
y\left(0\right)=0 \end{array}
\right.

which yields

\left\{ \begin{array}{c}
x\left(0\right)=0 \\ 
y\left(0\right)=0 \end{array}
\right.\ \ \ \ \Rightarrow \ \ \ \ \ \left\{ \begin{array}{c}
x\left(t\right)=v_0{\mathrm{cos} \left(\theta \right)\ }t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\ 
\\
\displaystyle{y\left(t\right)=-\frac{1}{2}gt^2+v_0{\mathrm{sin} \left(\theta \right)\ }t} \end{array}
\right.

Thus, we conclude that the components of the velocity of the projectile are given by

\left\{ \begin{array}{c}
x\left(0\right)=x_0 \\ 
y\left(0\right)=y_0 \end{array}
\right.\ \ \ \ \Rightarrow \ \ \ \ \ \left\{ \begin{array}{c}
x\left(t\right)=v_0{\mathrm{cos} \left(\theta \right)\ }t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\ 
\\
\displaystyle{y\left(t\right)=-\frac{1}{2}gt^2+v_0{\mathrm{sin} \left(\theta \right)\ }t} \end{array}
\right.

Summary:
In general, we can repeat this process for projectile motion scenarios where $x_0$ and $y_0$ are not necessarily both zero. In which case, the kinematic equations we would derive would be

Kinematic equations for velocity:

\boxed{
\begin{aligned}
v_x\left(t\right)&=v_0{\mathrm{cos} \left(\theta \right)\ } \\
v_y\left(t\right)&=-gt+v_0{\mathrm{sin} \left(\theta \right)\ }
\end{aligned}}

Kinematic equations for position:

\boxed{
\begin{aligned}
x\left(t\right)&=v_0{\mathrm{cos} \left(\theta \right)\ }t+x_0 \\
y\left(t\right)&=-\frac{1}{2}gt^2+v_0{\mathrm{sin} \left(\theta \right)\ }t+y_0
\end{aligned}}