Air Delivery
An airplane dives at an angle $\theta =37{}^\circ $ below the horizontal with a speed $v_0=100\ m/s$ and releases a package before swooping back up. The package travels a horizontal distance $R=160\ m$ as it falls a height $h$.
1. What is the time of flight of the package?
View answerHide answerFirst, we setup the kinematic equations of the radar decoy. Since it falls solely under its own weight, its vertical acceleration is $a_y=-g$ while its horizontal acceleration is $a_x=0$.
The components of the initial velocity of the decoy are $\displaystyle{\left\{ \begin{array}{c}
v_{0x}=v_0{\mathrm{cos} \left(\theta \right)\ } \\
v_{0y}=-v_0{\mathrm{sin} \left(\theta \right)\ } \end{array}
\right.}$.
Thus, the velocity, along $x$ and $y$, of the radar decoy is given by $\displaystyle{\left\{ \begin{array}{c}
v_x\left(t\right)=v_0{\mathrm{cos} \left(\theta \right)\ } \\
v_y\left(t\right)=-gt-v_0{\mathrm{sin} \left(\theta \right)\ } \end{array}
\right.}$ and the position, along $x$ and $y$, of the radar decoy as it falls, is given by
\left\{ \begin{array}{c} x\left(t\right)=v_0{\mathrm{cos} \left(\theta \right)\ }t \\ \\ \displaystyle{y\left(t\right)=-\frac{1}{2}gt^2-v_0{\mathrm{sin} \left(\theta \right)\ }t+h} \end{array} \right.
The time $t_1$ spent by the decoy in the air is the time required to cover a distance $R$ at a constant horizontal velocity $v_x\left(t\right)=v_0{\mathrm{cos} \left(\theta \right)\ }$. Thus, we have $x\left(t_1\right)=R$ and we solve for $t_1$ as follows
\begin{aligned} x\left(t_1\right)=R\ \ \ \ \ &\Rightarrow \ \ \ \ \ v_0{\mathrm{cos} \left(\theta \right)\ }t_1=R \\ \\ &\Rightarrow \ \ \ \ \ t_1=\frac{R}{v_0{\mathrm{cos} \left(\theta \right)\ }} \end{aligned}
The time of flight of the package is therefore equal to
\boxed{t_1=\frac{R}{v_0{\mathrm{cos} \left(\theta \right)\ }}=\frac{160}{100{\mathrm{cos} \left(37\right)\ }}\approx 2\ s}
2. From what height $h$ was the package dropped by the plane?
View answerHide answerThe package falls a height $h$ in a time $t_1$ and therefore $t_1$ satisfies $y\left(t_1\right)=0$. This allows us to solve for $h$ as follows
\begin{aligned} y\left(t_1\right)=0\ \ \ \ \ &\Rightarrow \ \ \ \ \ -\frac{1}{2}gt^2_1-v_0{\mathrm{sin} \left(\theta \right)\ }t_1+h=0 \\ \\ &\Rightarrow \ \ \ \ \ h=\frac{1}{2}gt^2_1+v_0{\mathrm{sin} \left(\theta \right)\ }t_1 \end{aligned}
The package was therefore dropped from a height equal to
\boxed{h=\frac{1}{2}gt^2_1+v_0{\mathrm{sin} \left(\theta \right)\ }t_1=\frac{1}{2}\left(9.8\right)\cdot 2^2+100\cdot {\mathrm{sin} \left(37\right)\ }\cdot 2\approx 140\ m\approx 140\ m}
3. What is the velocity of the package as it hits the ground?
View answerHide answerTo determine the velocity vector when the package hits the ground, we must know its component at that time at time $t_1$, which are equal to
\begin{aligned} v_x\left(t_1\right)&=v_0{\mathrm{cos} \left(\theta \right)\ }=100\cdot {\mathrm{cos} \left(37\right)\ }\approx 79.8\ m/s \\ \\ v_y\left(t_1\right)&=-gt_1-v_0{\mathrm{sin} \left(\theta \right)\ }=-9.8\cdot 2-100\cdot {\mathrm{sin} \left(37\right)\ }\approx -79.8\ m/s \end{aligned}
Therefore, the velocity vector when the package hits the ground is
\boxed{{\overrightarrow{v}}_f=79.8\ \hat{x}\ -\ 79.8\ \hat{y}\ \ \ \ \ \left(m/s\right)}