-- KINEMATICS --
-- PROJECTILE MOTION --
-- NEWTON'S LAWS --
-- CIRCULAR MOTION --
-- WORK & ENERGY --
MIDTERM 1 - STUDY GUIDE
-- GRAVITATION --
-- IMPULSE & MOMENTUM --
-- TORQUE - STATICS --
-- TORQUE - DYNAMICS --
-- TORQUE - ENERGY & MOMENTUM --
MIDTERM 2 - STUDY GUIDE
1 of 2

P01R2015 – Graphical Subtraction of Vectors

Graphical subtraction of vectors

A particle moves from point $A$ to point $B$ along a straight horizontal line in time $\mathrm{\Delta }t$. It then moves from point $B$ to point $C$ along a straight line in time $\mathrm{\Delta }t$. Use the coordinate system that you are given to draw vectors.

1. Draw the position vectors $\overrightarrow{r_A}$, $\overrightarrow{r_B}$ and $\overrightarrow{r_C}$ and the displacement vectors $\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}$ and $\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}$.

View answer

By definition, the position vector $\overrightarrow{r}$ points from the origin to the location of the particle it describes the position of. Thus, we draw the vectors $\overrightarrow{r_A}$, $\overrightarrow{r_B}$ and $\overrightarrow{r_C}$ extending from the origin to points $A$, $B$, and $C$ respectively.

The displacement vector $\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}={\overrightarrow{r}}_B-{\overrightarrow{r}}_A$ can be constructed by flipping the vector $\overrightarrow{r_A}$ and placing its tail at the tip of $\overrightarrow{r_B}$ as shown below. The displacement vector $\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}$ is the obtained by connecting the tail of $\overrightarrow{r_B}$ to the tip of $-\overrightarrow{r_A}$. You can then slide this vector so that it originates at point $A$ and terminates at point $B$. Alternatively, this can be simplified and generalized to simply drawing the vector that starts at point $A$ and ends at point $B$ thus describing the displacement $A\to B$.

We then use the simplified method to draw the displacement vector $\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}$ and directly draw the vector that extends from point $B$ to point $C$ and is therefore equal to ${\overrightarrow{r}}_C-{\overrightarrow{r}}_B$.

2. Draw the average velocity vectors ${\overrightarrow{v}}_A$ and ${\overrightarrow{v}}_B$ assuming that $\mathrm{\Delta }t=1\ s$.

View answer

The average velocities are defined by

\begin{aligned}
{\overrightarrow{v}}_A&=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{\mathrm{\Delta }t}=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{1}=\mathrm{\Delta }{\overrightarrow{r}}_{A\to B} \\
\\
{\overrightarrow{v}}_B&=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}}{\mathrm{\Delta }t}=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}}{1}=\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}
\end{aligned}

Since $\mathrm{\Delta }t=1\ s$, we find that the average velocity vectors ${\overrightarrow{v}}A$ and ${\overrightarrow{v}}_B$ have the same magnitude as the displacement vectors $\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}$ and $\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}$ respectively. Thus, we draw the vectors ${\overrightarrow{v}}_A$ and ${\overrightarrow{v}}_B$ as follows

3. Draw the average acceleration ${\overrightarrow{a}}_{avg}$ at point $B$ assuming that $\mathrm{\Delta }t=1s$.

View answer

By definition the average acceleration at point $B$ is given by

{\overrightarrow{a}}_{avg}=\frac{{\overrightarrow{v}}_B-{\overrightarrow{v}}_A}{\mathrm{\Delta }t}={\overrightarrow{v}}_B-{\overrightarrow{v}}_A

We start by constructing the vector ${\overrightarrow{v}}_B-{\overrightarrow{v}}_A$ by flipping ${\overrightarrow{v}}_A$ into $-{\overrightarrow{v}}_A$ and then adding $-{\overrightarrow{v}}_A$ to ${\overrightarrow{v}}_B$ as shown below.

We then note that because $\mathrm{\Delta }t=1\ s$, the two vectors ${\overrightarrow{a}}{avg}$ and ${\overrightarrow{v}}_B-{\overrightarrow{v}}_A$ have the same magnitude and that the average acceleration vector ${\overrightarrow{a}}_{avg}$ should be drawn as follows

4. Show that ${\overrightarrow{r}}_B-{\overrightarrow{r}}_A={\overrightarrow{v}}_A\mathrm{\cdot }\mathrm{\Delta }t$ where ${\overrightarrow{v}}_A$ denotes the average velocity at point $A$. Interpret this equation.

View answer

This result is immediately derived from the definition of the average velocity as shown below

{\overrightarrow{v}}_A=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{\mathrm{\Delta }t}=\frac{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A}{\mathrm{\Delta }t}\ \ \ \ \ \Leftrightarrow \ \ \ \ \ \boxed{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A={\overrightarrow{v}}_A\cdot \mathrm{\Delta }t}

This shows that the displacement vector ${\overrightarrow{r}}_B-{\overrightarrow{r}}_A$ changes by an amount ${\overrightarrow{v}}_A\cdot \mathrm{\Delta }t$ and can therefore be interpreted as the fact that over time, velocity changes the position of the particle by an amount equal to its displacement.

5. Show that ${\overrightarrow{v}}_B-{\overrightarrow{v}}_A={\overrightarrow{a}}_A\cdot \mathrm{\Delta }t$ where ${\overrightarrow{a}}_A$ denotes the average acceleration at point $A$. Interpret this equation.

View answer

This results is immediately derived from the definition of the average acceleration as shown below

{\overrightarrow{a}}_A=\frac{\mathrm{\Delta }\overrightarrow{v}}{\mathrm{\Delta }t}=\frac{{\overrightarrow{v}}_B-{\overrightarrow{v}}_A}{\mathrm{\Delta }t}\ \ \ \ \ \Leftrightarrow \ \ \ \ \ \boxed{{\overrightarrow{v}}_B-{\overrightarrow{v}}_A={\overrightarrow{a}}_A\cdot \mathrm{\Delta }t}

This shows that the velocity changes by an amount ${\overrightarrow{v}}_B-{\overrightarrow{v}}_A$ which is equal to ${\overrightarrow{a}}_A\cdot \mathrm{\Delta }t$ and can therefore be interpreted as the fact that over time, acceleration changes the velocity of the particle.

6. Draw ${\overrightarrow{v}}_A$ if $\mathrm{\Delta }t=1\ s$. Draw it again if $\mathrm{\Delta }t=3\ s$.

View answer

By applying the definition of average velocity, we obtain the following two results for $\mathrm{\Delta }t=1\ s$ and $\mathrm{\Delta }t=3\ s$ respectively.

If $\mathrm{\Delta }t=1\ s$:

{\overrightarrow{v}}_A=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{\mathrm{\Delta }t}=\frac{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A}{\mathrm{\Delta }t}={\overrightarrow{r}}_B-{\overrightarrow{r}}_A

If $\mathrm{\Delta }t=3\ s$:

{\overrightarrow{v}}A=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{\mathrm{\Delta }t}=\frac{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A}{\mathrm{\Delta }t}=\frac{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A}{3}

In the first case ${\overrightarrow{v}}_A$ and ${\overrightarrow{r}}_B-{\overrightarrow{r}}_A$ have the same magnitude and in the second case ${\overrightarrow{v}}_A$ is a third of the length of ${\overrightarrow{r}}_B-{\overrightarrow{r}}_A$. We draw the vector ${\overrightarrow{v}}_A$ for each situation below.