-- KINEMATICS --
-- PROJECTILE MOTION --
-- DYNAMICS --
-- CIRCULAR MOTION --
-- WORK & ENERGY --
-- IMPULSE & MOMENTUM --
-- CENTER OF MASS --
-- TORQUE - STATICS --
-- TORQUE - DYNAMICS --
-- TORQUE - ENERGY & MOMENTUM --
-- FLUIDS --
-- OSCILLATIONS --
-- MECHANICAL WAVES --

P02G2005 – Home Run

Home Run

A baseball is hit at ground level. The ball reaches its maximum height above the ground level $3.0\ s$ after being hit. Then $2.5\ s$ after reaching its maximum height, the ball barely clears a fence that is $97.5\ m$ horizontally from where it was hit. Assume the ground is level.

1. What is the maximum height above the ground reached by the ball?

View answer

We begin by setting up the kinematic equations for this problems. Here, we have:

x_0=0\ \ \ \ ;\ \ \ \ \ y_0=0\ \ \ \ \ ;\ \ \ \ \ v_{0x}=v_0{\mathrm{cos} \left({\theta }_0\right)\ }\ \ \ \ \ ;\ \ \ \ \ v_{0y}=v_0{\mathrm{sin} \left({\theta }_0\right)\ }

The kinematic equations are therefore:

\left\{ \begin{array}{c}
v_x\left(t\right)=v_0{\mathrm{cos} \left({\theta }_0\right)\ } \\ 
v_y\left(t\right)=-gt+v_0{\mathrm{sin} \left({\theta }_0\right)\ } \end{array}
\right.\ \ \ \ \ \ \ \ \ \ \left\{ \begin{array}{c}
x\left(t\right)=v_0{\mathrm{cos} \left({\theta }_0\right)\ }t \\ 
\displaystyle{y\left(t\right)=-\frac{1}{2}gt^2+v_0{\mathrm{sin} \left({\theta }_0\right)\ }t} \end{array}
\right.

However in this problem we must proceed with caution as the initial velocity $v_0$ and the launch angle ${\theta }_0$ are unknown. This means that we cannot just start answering the classic questions — such as the maximum height of the projectile — without first determining $v_0$ and ${\theta }_0$ or the components $v_{0x}=v_0{\mathrm{cos} \left({\theta }_0\right)\ }$ and $v_{0y}=v_0{\mathrm{sin} \left({\theta }_0\right)\ }$ of the initial velocity (which equivalently take into account $v_0$ and ${\theta }_0$).

To derive the $y$-component $v_{0y}=v_0{\mathrm{si}\mathrm{n} \left({\theta }_0\right)\ }$, we write that the ball reaches its maximum height at a time $t_1=3.0\ s$ for which its vertical velocity cancels. We therefore have

\begin{aligned}
v_y\left(t_1\right)=0\ \ \ \ &\Rightarrow \ \ \ \ -gt_1+v_0{\mathrm{sin} \left({\theta }_0\right)\ }=0 \\
&\Rightarrow \ \ \ \ \ v_0{\mathrm{sin} \left({\theta }_0\right)\ }=gt_1
\end{aligned}

This gives us the value of $v_0{\mathrm{sin} \left({\theta }_0\right)\ }$ since $t_1$ is known, and we then write that the maximum height is reached for $t_1$ and is equal to

\begin{aligned}
y_{max}&=y\left(t_1\right) \\
&=-\frac{1}{2}gt^2_1+v_0{\mathrm{sin} \left({\theta }_0\right)\ }t_1 \\
&=-\frac{1}{2}gt^2_1+\left(gt_1\right)\cdot t_1 \\
&=-\frac{1}{2}\left(9.81\right)\cdot 3^2+3\cdot 9.8\cdot 3 \\
&\approx 44.05\ m
\end{aligned}

where we used the value found for $v_0{\mathrm{sin} \left({\theta }_0\right)\ }$ from before. Thus, we conclude that the maximum height reached by the ball is equal to

\boxed{y_{max}=-\frac{1}{2}gt^2_1+\left(gt_1\right)\cdot t_1\approx 44.05\ m}

2. How high is the fence?

View answer

Let us call $t_2$ the time at which the ball is at the top of the fence. At that point, we can write:

\left\{ \begin{array}{c}
x\left(t_2\right)=D \ \ \ \ \ \  \\
y\left(t_2\right)=h_{fence} \end{array}
\right.

We know that $t_2=3.0+2.5=5.5\ s$. The height of the fence being equal to the height of the ball at time $t_2$, we have:

h_{fence}=y\left(t_2\right)\ \ \ \ \Rightarrow \ \ \ \ \ h_{fence}=-\frac{1}{2}gt^2_2+v_0{\mathrm{sin} \left({\theta }_0\right)\ }t_2

Thus, recalling that $v_0{\mathrm{sin} \left({\theta }_0\right)\ }=gt_1$, the height of the fence is equal to

\boxed{h_{fence}=-\frac{1}{2}gt^2_2+\left(gt_1\right)\cdot t_2=-\frac{1}{2}\left(9.81\right){\left(5.5\right)}^2+3\cdot 9.81\cdot 5.5\approx 13.64\ m}

3. How far beyond the fence does the ball strike the ground?

View answer

We label $d$ the distance between the fence and the point of impact of the ball. If $t_3$ is the time at which the ball hits the ground, then we may write:

\left\{ \begin{array}{c}
x\left(t_3\right)=D+d \\
y\left(t_3\right)=0 \ \ \ \ \ \ \ \  \end{array}
\right.

Using the second equation, we derive $t_3$ as follows:

\begin{aligned}
y\left(t_3\right)=0\ \ \ \ &\Rightarrow \ \ \ \ -\frac{1}{2}gt^2_3+v_0{\mathrm{sin} \left({\theta }_0\right)\ }t_3=0 \\
&\Rightarrow \ \ \ \ \ t_3\left(-\frac{1}{2}gt_3+v_0{\mathrm{sin} \left({\theta }_0\right)\ }\right)=0 \\
&\Rightarrow \ \ \ \ \ t_3=0\ \ \ \ \ or\ \ \ t_3=\frac{2v_0{\mathrm{sin} \left({\theta }_0\right)\ }}{g}
\end{aligned}

Thus, disregarding the solution $t_3=0\ s$, we have:

t_3=2\cdot 3\cdot \frac{9.81}{9.81}=6.0\ s

We may then use the first equation and write:

x\left(t_3\right)=v_0{\mathrm{cos} \left({\theta }_0\right)\ }t_3=D+d

This equation requires knowing what $v_0{\mathrm{cos} \left({\theta }_0\right)\ }$ is. We derive its value by considering that after $t_2=5.5\ s$, the ball has reached $D=97.5\ m$. Thus, we have

v_0{\mathrm{cos} \left({\theta }_0\right)\ }t_2=D\ \ \ \Rightarrow \ \ \ \ \ v_0{\mathrm{cos} \left({\theta }_0\right)\ }=\frac{D}{t_2}=\frac{97.5}{5.5}\approx 17.72\ m/s

The ball lands a distance $d$ behind the fence equal to

\boxed{d=v_0{\mathrm{cos} \left({\theta }_0\right)\ }t_3-D\approx 17.72\cdot 6-97.5\approx 8.82\ m}