Semicircle with Non-Uniform Charge Density
A semicircle of charge with radius $R$ carries a non-uniform linear charge density $\lambda ={\lambda }_0{\mathrm{cos} \left(\theta \right)\ }$ where ${\lambda }_0$ is a positive constant.
1. Find the electric field at the center of the semicircle.
View answerHide answerWe consider an infinitesimal slice of length $ds=Rd\theta $ located at an arbitrary angle $\theta $ as shown below.
The infinitesimal charge $dq$ of this slice is equal to $dq=\lambda ds={\lambda }_0R\theta d\theta $ and it creates an electric field of magnitude $dE$ at the center of semicircle given by
dE=\frac{kdq}{R^2}=\frac{{\lambda }_0k}{R}{\mathrm{cos} \left(\theta \right)\ }d\theta
The $x$-component of the electric field at the center of the semicircle is equal to
dE_x=dE{\mathrm{sin} \left(\theta \right)\ }=\frac{{\lambda }_0k}{R}{\mathrm{sin} \left(\theta \right)\ }{\mathrm{cos} \left(\theta \right)\ }d\theta
and integrating over the semicircle from $\theta =-\pi $ to $\theta =+\pi $ then yield the $x$-component of the electric field $E_x$ as follows
E_x=\int^{+\pi /2}_{-\pi /2}{\frac{{\lambda }_0k}{R}{\mathrm{sin} \left(\theta \right)\ }{\mathrm{cos} \left(\theta \right)\ }d\theta }=\frac{{\lambda }_0k}{R}\int^{+1}_{-1}{udu}=0
where we used the substitution $\left\{ \begin{array}{c}
u={\mathrm{sin} \left(\theta \right)\ } \\
du={\mathrm{cos} \left(\theta \right)\ }d\theta \end{array}
\right.$. Thus, we conclude that there is no $x$-component of the electric field at the center of the semicircle and we write
\boxed{E_x=0}
The $y$-component of the electric field at the center of the semicircle is equal to
dE_y=dE{\mathrm{cos} \left(\theta \right)\ }=\frac{{\lambda }_0k}{R}{{\mathrm{cos}}^{\mathrm{2}} \left(\theta \right)\ }d\theta
and integrating over the semicircle from $\theta =-\pi /2$ to $\theta =+\pi /2$ then yield the $x$-component of the electric field $E_y$ as follows
\begin{aligned} E_y&=\int^{+\pi /2}_{-\pi /2}{\frac{{\lambda }_0k}{R}{{\mathrm{cos}}^{\mathrm{2}} \left(\theta \right)\ }d\theta } \\ \\ &=\frac{{\lambda }_0k}{R}\int^{+\pi /2}_{-\pi /2}{\left(\frac{1+{\mathrm{cos} \left(2\theta \right)\ }}{2}\right)}d\theta \\ \\ &=\frac{{\lambda }0k}{2R}{\left[\theta +\frac{{\mathrm{sin} \left(2\theta \right)\ }}{2}\right]}^{\pi /2}_{-\pi /2} \\ \\ &=\frac{{\lambda }_0k}{2R}\left[\frac{\pi }{2}+\frac{{\mathrm{sin} \left(\pi \right)\ }}{2}+\frac{\pi }{2}-\frac{{\mathrm{sin} \left(-\pi \right)\ }}{2}\right] \\ \\ &=\frac{{\lambda }_0k\pi }{2R} \end{aligned}
where we used the trig identity $\displaystyle{{{\mathrm{cos}}^2 \left(\theta \right)\ }=\frac{1+{\mathrm{cos} \left(2\theta \right)\ }}{2}}$. Thus, we conclude that the $y$-component of the electric field at the center of the semicircle is equal to
\boxed{E_y=\frac{{\lambda }_0k\pi }{2R}}
Finally, the electric field at the center of the semicircle is given by
\boxed{\overrightarrow{E}=\frac{{\lambda }_0k\pi }{2R}\ \hat{y}}