Graphical subtraction of vectors
A particle moves from point $A$ to point $B$ along a straight horizontal line in time $\mathrm{\Delta }t$. It then moves from point $B$ to point $C$ along a straight line in time $\mathrm{\Delta }t$. Use the coordinate system that you are given to draw vectors.
1. Draw the position vectors $\overrightarrow{r_A}$, $\overrightarrow{r_B}$ and $\overrightarrow{r_C}$ and the displacement vectors $\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}$ and $\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}$.
View answerBy definition, the position vector $\overrightarrow{r}$ points from the origin to the location of the particle it describes the position of. Thus, we draw the vectors $\overrightarrow{r_A}$, $\overrightarrow{r_B}$ and $\overrightarrow{r_C}$ extending from the origin to points $A$, $B$, and $C$ respectively.
The displacement vector $\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}={\overrightarrow{r}}_B-{\overrightarrow{r}}_A$ can be constructed by flipping the vector $\overrightarrow{r_A}$ and placing its tail at the tip of $\overrightarrow{r_B}$ as shown below. The displacement vector $\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}$ is the obtained by connecting the tail of $\overrightarrow{r_B}$ to the tip of $-\overrightarrow{r_A}$. You can then slide this vector so that it originates at point $A$ and terminates at point $B$. Alternatively, this can be simplified and generalized to simply drawing the vector that starts at point $A$ and ends at point $B$ thus describing the displacement $A\to B$.
We then use the simplified method to draw the displacement vector $\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}$ and directly draw the vector that extends from point $B$ to point $C$ and is therefore equal to ${\overrightarrow{r}}_C-{\overrightarrow{r}}_B$.
2. Draw the average velocity vectors ${\overrightarrow{v}}_A$ and ${\overrightarrow{v}}_B$ assuming that $\mathrm{\Delta }t=1\ s$.
View answerThe average velocities are defined by
\begin{aligned} {\overrightarrow{v}}_A&=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{\mathrm{\Delta }t}=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{1}=\mathrm{\Delta }{\overrightarrow{r}}_{A\to B} \\ \\ {\overrightarrow{v}}_B&=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}}{\mathrm{\Delta }t}=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}}{1}=\mathrm{\Delta }{\overrightarrow{r}}_{B\to C} \end{aligned}
Since $\mathrm{\Delta }t=1\ s$, we find that the average velocity vectors ${\overrightarrow{v}}A$ and ${\overrightarrow{v}}_B$ have the same magnitude as the displacement vectors $\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}$ and $\mathrm{\Delta }{\overrightarrow{r}}_{B\to C}$ respectively. Thus, we draw the vectors ${\overrightarrow{v}}_A$ and ${\overrightarrow{v}}_B$ as follows
3. Draw the average acceleration ${\overrightarrow{a}}_{avg}$ at point $B$ assuming that $\mathrm{\Delta }t=1s$.
View answerBy definition the average acceleration at point $B$ is given by
{\overrightarrow{a}}_{avg}=\frac{{\overrightarrow{v}}_B-{\overrightarrow{v}}_A}{\mathrm{\Delta }t}={\overrightarrow{v}}_B-{\overrightarrow{v}}_A
We start by constructing the vector ${\overrightarrow{v}}_B-{\overrightarrow{v}}_A$ by flipping ${\overrightarrow{v}}_A$ into $-{\overrightarrow{v}}_A$ and then adding $-{\overrightarrow{v}}_A$ to ${\overrightarrow{v}}_B$ as shown below.
We then note that because $\mathrm{\Delta }t=1\ s$, the two vectors ${\overrightarrow{a}}{avg}$ and ${\overrightarrow{v}}_B-{\overrightarrow{v}}_A$ have the same magnitude and that the average acceleration vector ${\overrightarrow{a}}_{avg}$ should be drawn as follows
4. Show that ${\overrightarrow{r}}_B-{\overrightarrow{r}}_A={\overrightarrow{v}}_A\mathrm{\cdot }\mathrm{\Delta }t$ where ${\overrightarrow{v}}_A$ denotes the average velocity at point $A$. Interpret this equation.
View answerThis result is immediately derived from the definition of the average velocity as shown below
{\overrightarrow{v}}_A=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{\mathrm{\Delta }t}=\frac{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A}{\mathrm{\Delta }t}\ \ \ \ \ \Leftrightarrow \ \ \ \ \ \boxed{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A={\overrightarrow{v}}_A\cdot \mathrm{\Delta }t}
This shows that the displacement vector ${\overrightarrow{r}}_B-{\overrightarrow{r}}_A$ changes by an amount ${\overrightarrow{v}}_A\cdot \mathrm{\Delta }t$ and can therefore be interpreted as the fact that over time, velocity changes the position of the particle by an amount equal to its displacement.
5. Show that ${\overrightarrow{v}}_B-{\overrightarrow{v}}_A={\overrightarrow{a}}_A\cdot \mathrm{\Delta }t$ where ${\overrightarrow{a}}_A$ denotes the average acceleration at point $A$. Interpret this equation.
View answerThis results is immediately derived from the definition of the average acceleration as shown below
{\overrightarrow{a}}_A=\frac{\mathrm{\Delta }\overrightarrow{v}}{\mathrm{\Delta }t}=\frac{{\overrightarrow{v}}_B-{\overrightarrow{v}}_A}{\mathrm{\Delta }t}\ \ \ \ \ \Leftrightarrow \ \ \ \ \ \boxed{{\overrightarrow{v}}_B-{\overrightarrow{v}}_A={\overrightarrow{a}}_A\cdot \mathrm{\Delta }t}
This shows that the velocity changes by an amount ${\overrightarrow{v}}_B-{\overrightarrow{v}}_A$ which is equal to ${\overrightarrow{a}}_A\cdot \mathrm{\Delta }t$ and can therefore be interpreted as the fact that over time, acceleration changes the velocity of the particle.
6. Draw ${\overrightarrow{v}}_A$ if $\mathrm{\Delta }t=1\ s$. Draw it again if $\mathrm{\Delta }t=3\ s$.
View answerBy applying the definition of average velocity, we obtain the following two results for $\mathrm{\Delta }t=1\ s$ and $\mathrm{\Delta }t=3\ s$ respectively.
If $\mathrm{\Delta }t=1\ s$:
{\overrightarrow{v}}_A=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{\mathrm{\Delta }t}=\frac{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A}{\mathrm{\Delta }t}={\overrightarrow{r}}_B-{\overrightarrow{r}}_A
If $\mathrm{\Delta }t=3\ s$:
{\overrightarrow{v}}A=\frac{\mathrm{\Delta }{\overrightarrow{r}}_{A\to B}}{\mathrm{\Delta }t}=\frac{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A}{\mathrm{\Delta }t}=\frac{{\overrightarrow{r}}_B-{\overrightarrow{r}}_A}{3}
In the first case ${\overrightarrow{v}}_A$ and ${\overrightarrow{r}}_B-{\overrightarrow{r}}_A$ have the same magnitude and in the second case ${\overrightarrow{v}}_A$ is a third of the length of ${\overrightarrow{r}}_B-{\overrightarrow{r}}_A$. We draw the vector ${\overrightarrow{v}}_A$ for each situation below.