-- KINEMATICS --
-- PROJECTILE MOTION --
-- NEWTON'S LAWS --
-- CIRCULAR MOTION --
-- WORK & ENERGY --
-- MIDTERM 1 - STUDY GUIDE --
-- IMPULSE & MOMENTUM --
-- GRAVITATION --
-- CENTER OF MASS --
-- TORQUE - STATICS --
-- TORQUE - DYNAMICS --
-- TORQUE - ENERGY & MOMENTUM --
-- FLUIDS --
-- OSCILLATIONS --
-- MIDTERM 2 - STUDY GUIDE --
-- WAVES --
-- CALORIMETRY --
-- 1st LAW OF THERMODYNAMICS --
-- 2nd LAW OF THERMODYNAMICS --
-- FINAL - STUDY GUIDE --
1 of 2

P01R2015 – Trip to the Store

Trip to the Store

Your apartment and the grocery store are both located on the same side of Main Street and are separated by a distance $d=1\ km$. You decide to head out to pick up a few items despite the light rain.

View answer

Using $\hat{x}$ to indicate direction, your displacement vector from your apartment to the store is $\mathrm{\Delta }\overrightarrow{r}=1000\ \hat{x}$ (in meters). Thus, your average velocity is equal to

\boxed{{\overrightarrow{v}}_{avg}=\frac{\mathrm{\Delta }\overrightarrow{r}}{\mathrm{\Delta }t}=\frac{1000}{5\cdot 60}\ \hat{x}\approx 3.33\ \hat{x}\ \ \ \left(m/s\right)}

Your average speed is equal to the ratio of the total distance traveled over the total time and is therefore equal to

\boxed{v_{avg}=\frac{d}{\mathrm{\Delta }t}=\frac{1000}{5\cdot 60}\approx 3.33\ m/s}
View answer

During your trip home, your velocity changes by an amount

\mathrm{\Delta }\overrightarrow{v}={\overrightarrow{v}}_f-{\overrightarrow{v}}_i=-2\ \hat{x}-\left(-1.2\ \hat{x}\right)=-0.8\ \hat{x}\ \ \ \ \ \left(m/s\right)

Your average acceleration is therefore equal to

\boxed{{\overrightarrow{a}}_{avg}=\frac{\mathrm{\Delta }\overrightarrow{v}}{\mathrm{\Delta }t}=-\frac{0.8}{20\cdot 60}\ \hat{x}\approx -6.67\times {10}^{-4}\ \hat{x}\ \ \left(m/s^2\right)}
View answer

Your displacement vector during your trip back home is equal to $\mathrm{\Delta }\overrightarrow{r}=-1000\ \hat{x}$ and therefore your average velocity is equal to

\boxed{{\overrightarrow{v}}_{avg}=\frac{\mathrm{\Delta }\overrightarrow{r}}{\mathrm{\Delta }t}=-\frac{1000}{20\cdot 60}\ \hat{x}\approx -0.83\ \hat{x}\ \ \ \left(m/s\right)}

Your average speed is equal to the ratio of the total distance traveled over the total time and is therefore equal to

\boxed{v_{avg}=\frac{d}{\mathrm{\Delta }t}=\frac{1000}{20\cdot 60}\approx 0.83\ m/s}
View answer

If you consider the entire trip, your displacement vector is equal to $\mathrm{\Delta }\overrightarrow{r}=\overrightarrow{0}$ and therefore your average velocity is equal to

\boxed{{\overrightarrow{v}}_{avg}=\overrightarrow{0}\ \ \ \left(m/s\right)}

Your average speed, however, is not zero because it is the ratio of the total distance traveled over the total time spent. It is therefore equal to

\boxed{v_{avg}=\frac{2d}{\mathrm{\Delta }t_{tot}}=\frac{2\cdot 1000}{5\cdot 60+10\cdot 60+20\cdot 60}\approx 0.95\ \ m/s}